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Abstract

A method for extracting the motion parameters of several independently moving
objects from displacement field information is :ncribed. The method s based on a
generalized Hough transform technique. Some of the problems of this technique are
addressed and appropriate solutions are proposed. A modified multipa Hough transform
approac has been implemented, where in each pass windows are located around objects

and the transform is applied only to the displacement vectors contained in these windows.
The windows are determined by the degree to which the displacement field iu locally
inconsistent with previously found motion transformadons. Thus, the sensitivity of the
Hough transform to local events is increased and the I motion parameters of small objects
can be detected even in a noisy displacement field.-W also usesa multi-resolution scheme
in both the image plane and the parameter space and thus redue, the computationa cost
of the technique. The method is demonstrated by experiments " on artificial imags
with four parameters of 2-1) motion: rotation, expansion and translation in both axes.

This paper will appear in the proceedings of the DARPA Image Ud Workshop,
to be held in Arlington VA, June 193. (T IC
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1. lntroduction

A time-varying scene may contain several independently moving objects with unknown

location, shape and 3-D structure. The interpretation of such a scene includes the

computation of the motion parameters of the camera and each moving object. This

information is useful in areas such as robotics and navigation. It could also be used as

an intermediate stage for achieving the tasks of object-surround separation and structure

determination.

Our approach for recovering the motion parameters is based on two phases. First,

we compute a displacement field, composed of vectors describing the displacement of image

elements from one image to the next (see section 2). In this paper we assume a dense

displacement field, but the second phase is basically independent of this assumption. Each

displacement vector is assigned a weight representing its reliability.

In the second phase the displacement field is interpreted and the motion parameters

are recovered. This phase, which is the main concern of the paper, is based on the

generalized Hough transform technique [BAL8Ia]. In this technique the motion parameters

are reprsented by a discrete multi-dimensional parameter space where each dimension

corresponds to one of the parameters. Each point in this space uniquely characterizes a

motion transformation, defined by the corresponding parameter values. A displacement

vector "votes" for a point in the space if the corresponding transformation is consistent with

this vector. The points receiving the most votes are likely to represent the motion

parameters of different objts.
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There are a few techniques described in the literature which use the Hough transform

for dealing with scenes containing several moving objects. Fennema and Thompson [FEN79]

compute spatial and temporal gradients of the image. A Hough transform technique is used

to detect velocities which are consistent with a significant portion of the gradient field. A

multipass approach is used: first the most prominent peak in the Hough transform is

found and thus the velocity of the largest object is recovered. Then the image points which

are consistent with this velocity are removed and a new peak is looked for. The process is

repeated until no further objects are found. This system is restricted to translation. It also

has problems in recognizing significant peaks THOSI].

Ballard and Kimball [BAL81b] consider the case of general 3-D motion of rigid

objects, but assume knowledge of depth information. A Hough transform technique for

computing the motion parameters from 3-D optic flow is implemented. The simulation, as

described in their report, assumes only one moving object, but it is argued that a multipass

approach would handle the case of several moving objects.

Jayaramurthy and Jain (JAY82] describe an implementation of the Hough transform

technique for computing motion parameters directly from the intensity information. Several

moving objects are allowed, but a stationary background and translational motion are

assumed.

One of the well known advantages of the Hough technique is its relative insensitivity

to noise and partially incorrect or occluded data. Another advantage is its ability to detect

consistency in the image. In our case it can group together displacement vectors which

satisfy the same motion parameters and presumably belong to one object.

I
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On the other hand, the Hough technique has a few disadvantages. It is insensitive

to spatial relations in the displacement field. Thus, a group of non-adjacent elements, which

incidently vote for the same motion transformation, may be considered as representing one

object, whereas the motion parameters of a small object may be difficult to detect. The

technique also has high computational cost. Fine resolution in the parameter space, which is

related to the accuracy of the final results, requires large amounts of memory and

computation time.

This paper addresses these problems. A few ideas are examined in a restricted case of

2-D motion with four parameters (rotation, expansion and translation in both axes). An

analysis of reliability and efficiency considerations is presented (section 32) and new

solutions are proposed (section 4). A modified multipass Hough transform approach has

been implemented, where in each pass windows are located around objects and the

transform is applied only to the displacement vectors contained in these windows. The

windows are determined by the degree to which the displacement field is locally inconsistent

with previously found motion trandormations. Thus, the sensitivity of the Hough transform

to local events is increased and the motion parameters of small objects can be detected

even in a noisy displacement field. We also use a multi-resolution scheme in both the

image plane and the parameter space and thus reduce the computational cost of the

technique. Thes ideas are demonstrated by expenments based on artificial images (section

5).
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2. Computng a Displacemen Field and a Weight Plane

In the first phase of the algorithm we compute a displacement field from two

sampled images. These images contain several objects which are moving independently. The

background is considered as one of the objects. The motion of each object is composed of

rotation, expansion and translation. It can be represented by the following affine

transformation:

(2.1) i° = (1+expanXcos(rot) i-sin(rot) jl+trI

(2.) j = (1+expanXsin(rot) i+cos(rot) j]+tr2

where (ij) is a pixel in the first image, (i',j') is the corresponding pixel in the second

image and rot, expan, tr1 and tr2 are the motion parameter values.

The displacement field can be described by ((D1(ij), D2(ij))) where (DI(idj), D2(ij))

represents the displacement vector at the (ij) pixel in the first image. We compute it by

using the Horn and Schunck technique (HORS0] (however, the second phase of our

algorithm is almost independent of this specific choice). In order to use this tehnique we

assume a small displacement at each pixel and absence of illumination effects. It starts by

calculating, at each pixel, the spatial gradient (El, E2) and the temporal derivative Et.

The assumption that the brightness of a particular point in the scene is constant over time

provides the following constraint:

(23) EIDI+E+D2+Et = 0

The assumption of the smoothness of the displacement field provides another constraint.

An error function can represent, for a given displacement field, the degree of

departure from these constraints. The technique is based on iteratively minimizing this

function. Ideally, the resulting field (D1, D2) should satisfy the following equations, derived
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from equations (2.1) and (22):

(2.4) i+Dl(ij) = (1+expanXcos(rot) i--mn(rot) j+trj

(25) j+D 2 (ij) = (1+exanXun(rot) i+cOG(rot) l+tr2

where rot, expan, trI and tr2 are the motion parameter values in the (i,j) pixel.

Figure 1 shows two pairs of artificial images which contain several independently

moving objects. The motion parameters of each object are specified in tables 5.1 and 52.

Figure 2 shows the result of applying the Horn and Schunck technique to these images.

The smoothness constraint is violated at the boundaries of independently moving

objects. Therefore, the computed displacement values in these areas are incorrect.

Fortunately, these areas can be detected by using the error function which represents the

departure from the constraints. High values of the error function indicate that the

constraints are not satisfied and the computed displacement values are unreliable.

For each displacement vector we compute an associated weight such that high

reliability Oow value of the error function) is represented by a value close to I and low

reliability by a value close to 0. An appropriate relation between the error function,

erf(ij), and the weight, W(ij), can be obtained by the function

(2.6) W(ij) = e'erf(i,J)yk

The parameter k was experimentally determined as 0.07. However, this value need to be

decreased with noisier data. Figure 3 shows the weight planes computed for the

displacement fields in figure 2. When the Hough transform is computed later the

influence ('voting' power) of each displacement vector will be proportional to its associated

weight.
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Figure la: Intensity images used in the first experiment (the white lines only
emphasize the contours of the objects and are not part of the images);
- object A is the background,
- object B is the large circle in the center of the image,
- object C is the small circle in the upper left corner.
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Figure L~b: Intensity images used in the second experiment;
- object A is the background,
- object B is the circle in the upper right corner,
- object C ithe circle - hich partially occludes object B,
- object D I rir in the left part of the image,
- object E is vn sali circle in the lower part.
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(a)

(b)

Figure 3: Weight planes. Note the correspondence between low values
(represented by darker gray levels) in the weight planes and incorrect values
of displacement vectors in the boundaries of the objects. (a) First experiment.
(b) Second experiment.
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3. The Generalized Rough Transform Technique

3.1 General Description

The motion parameters can be represented by a 4-dimensional parameter space where

each dimension corresponds to one of the motion parameters: rotation (rot), expansion or

contraction (expan), vertical translation (trj) and horizontal translation (tr2). Each point in

this space uniquely characterizes a motion transformation in the image.

We say that a displacement vector (Dl(ij), D2(ij)) is consistent with a point

(rot,expan,trl,tr 2) in the parameter space if it satisfies equations (2.4) and (25). Let us

define a subset B(ij) of the parameter space as the set of all the points in this space

which are consistent with (Dj(ij), D2(i,j) ). Using the definition in [BAL81a], the Hough

transform is the following function, defined on the parameter space:

(3.1) H(rotexpantr1 ,tr2) = W(i,j)
(rot,expan,tr 1,tr2) E B(i,j)

i.e., H(rotexpantrltr 2) is the sum of the associated weights of all the displacement vectors

which are consistent with the point (rotexpantrptr2). High values of the Hough transform

represent motion transformations which are consistent with a significant portion of the

vectors. The use of the weight function W should prevent unreliable values of displacement

vectors from creating false peaks.

In practice, we assume a limited velocity of objects, i.e. minimal and maximal values

for each parameter. The corresponding intervals are quantized and thus each parameter is

represented by a discrete set of values. The parameter space is the cartesian product of

these sets.



For each displacement vector (DI(ij), D2 (iJ)) and each pair (Vot~expan) Of rotation

and expansion, theme exists exactly one pair of translations (tr itr2-) which satisfies

equations (2A) and (2-5). If trl and tr2 0are within the limits of the respective

dimensions of the parameter space, then we can find exactly One pair (tr11tr2) such that trl

and tr2 are sampled values and

(3.2) tr1-res/2 :5 tr1  < trl+res/2

(3.3) tr2-res2 !5 tr2  < tr2 +resf2

where res is the resolution of the translation variables in the parameter space. In this case

we say that ( 1 (ij), D32 (ij)) 'votes' for (rot~expantr1 ,tr2), Le., it contributes its weight to

H(rot~expan,trl,tr 2)-

Finally, among the points whose Hough transform exceeds a given threshold in the

parameter space, local maxima are found. These represent the hypothetical motions of

objects in the image.

3.2 Rel~abilty and Efficiency Comkleratloau

The resolution of the parameter space should be determined by a few considerations:

the signal to noise ratio (SNR), the required accuracy, the computation time and the

required storage space.

For each independently moving object in the scene, the SNR in the parameter space

can be defined as:

(3A) NR = no. of votes for the object mgon
average no. of votes for each parameter value

(for a different definition see [BRO62D. If the SNR is low, then false peaks, higher than

the aluecorespodin to the object, can be created. Thus the detection of the objects

motion, by a straightforward Hough technique, may be difficult or impossible.
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Let us assume that the multiplicative parameters of rotation and expansion are

quantized into P, elements each and that the translation parameters are quantized into P2

elements each. Then the parameter space includes p12p22 elements. Let n be the number of

displacement vectors which are considered in the computation of the Hough transform.

According to the voting process described in section (3.1), for each displacement vector and

each pair (rotexpan), there exits at most one pair (trltr2) of translations such that the

displacement vector votes for (rotxpan,trtr2). Asuming that trl and tr2 are likely to be

within the limits of the respective dimensions (and that is the case in our experiments) we

can estimate the average number of votes for each parameter value as np1
2/(p1

2p2
2) -

n/p22 " If c represents the fraction of the image covered by an object, then it contains cn

displacement vectors, where O<cs:l. Thus, we can estimate the SNR by:

(3.5) SNR - 0 = cp2 2
n/p22

If for reliable detection of the object, the SNR should be larger than some threshold

t, then p2 should satisfy the constraint p2 z! Vi. For example, if t=10 and c=0.01 then

p2 should be at least 32. This observation also indicates that for a given P2, the motion

transformation of a small object may be difficult to detect.

The second consideration is the required accuracy. The parameter resolution can be

dynamically modified to fit the expected constraints of the task domain. Uf, for example,

the maximal value of rotation is 1/8 radian, the minimal value is -1/8 radian and the

required resolution is 1128 radian, then P, should be at least 32.
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The third consideration is computation time. Computationally, the most expensive

process is the voting process. We saw in section (3.1) that the basic operation in this

process is computing trI , tr2 for each displacement vector and each pair (rotexpan).

Therefore, the voting process takes approximately snpt 2 time units, where each basic

operation takes s time units.

The fourth consideration is the required memory for the parameter space which

includes p12p22 elements. If we combine the requirements for high SNR and high accuracy

we may have

(3.6) pi2p22 & 324 > 1000000

In such a large array, finding local maxima also becomes a computationally expensive task.

Finally, assuming that we want to obtain a given accuracy and we are given a

storage space with a fixed size, the optimal values of pI and p2 can be determined. Let us

suppose that the image contains m2 pixels and that the origin of the coordinate system is

in the center of the image. Then, using a resolution of a, in the multiplicative parameters

of rotation and expansion can cause, at the boundary of the image, a displacement error

of me/2. Therefore, it is reasonable to quantize the parameter space in such a way that

me, - a2 , where f2 is the resolution of translation. Consequently, if m is multiplied by 4,

for example, then P, should be multiplied by 2 and p2 should be divided by 2.

r" - - -~.' . . C- -



14

4. Computing Modm Paramete from DIsplacement Fied Iormt&h.

4.1 Key Ideas

The proposed method is intended to reduce the problems mentioned in the last

section and to test mechanisms for solving such problems for even more difficult tasks, e.g.

recovering the motion parameters of 3-D motion with six degrees of freedom.

The key ideas which are used for accomplishing this goal are the following:

1) Given a large displacement field (such as the 128x128 array in the experiments),

we can compute the motion parameters of large objects by using a coarse resolution field.

Such a field can be obtained by uniformly sampling the initial field. In this way, we can

considerably reduce the computation time.

2) We can frind the motion parameters of a given small object by locating a window

around the object and applying the Hough transform only to the displacement vectors

contained in this window. Such a window can be located by using a multipas approach

(see next section). By focusing our attention to the window, we increase the proportion of

the vectors contained in the object, i.e., we increase c in equation (35). We can now

decrease p2 and still find the motion parameters of the object. This technique enables us to

detect small objects and save time and storage space.

3) Even with a limited memory size, we can find accurate parameter values by

iteratively using the Hough technique. In each iteration we quantize the parameter space

around the values estimated in the previous iteration, using a finer resolution. Other

methods for reducing the required space in Hough techniques can be found in [ORO81,

SLOBI].

....." " --- ".. . , -" * " . " . .. ..- T t._ .Z .... . .. . . . . .. i



42 Deuriptimo

42.1 Gemea

The algorithm is based on repeatedly executing a basic cycle of operations. The input

to each cycle includes:

1) A list L of motion transformations which were computed in previous cycles

(initially L is an empty list).

2) A binary mask array A in registration with the displacement field. Each element

in A is either I or 0: 1 if the corresponding displacement vector is consistent with one of

the already computed motion transformations; 0 otherwise. Initially all the entries in this

array are set to 0.

Each cycle is composed of the following steps:

1) Locate windows in the image which contain relatively dense clusters of O-entries in

A. Initially there is one window consisting of the whole image.

2) For each window compute the Hough transform and hypothesize (see section 42.3)

the motion trandormations.

3) Test, sequentially, the hypothesized transformations. The test is done by

considering the O-entries in A that are contained in the window, and summing the weights

of the associated displacement vectors which are consistent with the hypothesized

transformation. If the sum is higher than a given threshold, the transformation is

confirmed. In this case it is added to the list L and the array A is updated

correspondingly.

.... , .A, -
'
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422 Lc=tlng Windows

A window can be described as a set {(i,j): i0g-i<i1 , j0j<jl). For implementation

reasons, we consider only windows such that

io, il, Jo, j, E{,4,8,...,28
and

ij-io, J1 Jo 1 48,16,32,64)

For each window, we define a criterion function CR by:

(4.1) cR . no. of )-entries of A in the window( area of the window

We look for windows with high values of CR. Such windows contain dense clusters of

0-entries in A. The use of square root in the denominator of equation (4.1) means that

this density can be lower as the window becomes larger. If we would eliminate the square

root in this equation, then too small windows, which contain only O-entries, would be

chosen. If we do not find any appropriate windows, i.e. windows whose criterion function

exceeds a given threshold, the process is stopped. The reason is that probably there are no

more objects whose motion transformation has not already been found.

Figure 4 shows the windows found in the second cycle when the method is applied

to the images in figure 1. Figure 5 shows the A arrays when the proceses are stopped.

The black areas in figure 5, which represent the O-entries in the A arrays, correqmd to

incorrect values of displacement vectors in the boundaries of the objects.
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(a)

(b)I

VI~urs 4: Optimal w~ados found in the A arrays during the *=aod cyde of
the experiments. (a) 7am xperiamnt. (b) Second experiment.



(a)

Figure 5: Fnal A arrays. (a) Furst experiment. (b) Second Experiment.
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42.3 Te By s Phase

Before we start the voting process of the displacement vectors in a given window, we

have to decide which vectors take part in this process and how the parameter space is

defined. If the window contains no more than 1024 elements, then all of them take part

in the voting process. Otherwise, for efficiency considerations (see section 4.1), we will

utilize a uniformly sampled subset of 1024 elements. For example, if the window is 32x64

elements, we define a sub-array of 32x32 elements by choosing all the elements (ij) such

that j is even.

The parameter space is an adjustable 4-D array (adjustable' means that the number

of elements in each dimension is not fixed) which contains 174 (-90000) elements. We

assume that the rotation is limited to 0.125 radians in each direction, the expansion (or

contraction) is limited to 0.125 and the translation is limited to 8 pixels in each direction.

The axes which correspond to rotation and expansion contain P, elements each and the

axes which correspond to the translations contain p2 elements each. If the length of the

window is at least 64 elements then, according to the argument described at the end of

section 32 for equalizing the effective parameter resolutions, we choose pl=p2 f17; otherwise

p, is decreased and p2 is increased. So, for example, if the window is 16X16, we choose

p1=9 and p2=31.

After the voting proces is finished, local maxima in the Hough transform are

determined. From these candidates, the ones that exceed a given threshold are selected.

The threshold is proportional to the number of all the voting displacement vectors. If the

resolution of the translation axes is more than 12 pixel, we define a new parameter space,

around each maxima point, with finer resolution. We then recompute the Hough
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transform. The process is repeated until we achieve a resolution of 1/2 pixel at most. At

the end of this proes we have a set of hypothesized transformations.

42.4 The Tedig Phm

In this phase we sequentially test the hypothesized transformations in the order of

their Hough transform values in the parameter space. We test only the transformations

which are still not included in the list L of confirmed transformations. When we test a

given transformation, we check all the displacement vectors with associated O-entry in the

corresponding window. We sum the weights of such vectors which are consistent with the

hypothesized transformation. We also compute a threshold proportional to the number of

O.entries in A, contained in the window. If the sum is higher than the threshold, we

accept the transformation, add it to the list L and update the array A. In the current

implementation, the process is stopped if we do not accept any transformation in any of

the windows.

-. ..
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S. E.xpe, imets

We performed two experiments based on two pairs of 128x128 artificial images

(figure 1). In the experiments the objects were transformed according to the upper values

in each entry in tables 5.1 and 5.2. The lower numbers in these entries are the computed

parameters.

I I rotation I expansion I vertical horizontal I
I I (radians) I I translation I translation I

I I I (pixels) I (pixels) I

I object A I I t t I
I actual 1 0. 1 0. 1 0. i 0. i
I computed 1 0. 1 0. 1 0. I 0. 1

I object B I I I I
I actual I 0.07 I 0. 1 0. 1 0. 1
I computed I 0.0781 1 0. 1 0. I 0. I

I object C I I I t I
I actual 1 0. 1 0. 1 0. 1 2. 1
I computed I 0. 1 0. I 0. 1 2. t

table 5.1 - firt experiment

In the first stage - the displacement field was computed (figure 2). Note the errors

at the boundaries of the objects which correspond to low values in the weight planes

(figure 3).

In experiment 1, during the first cycle of the algorithm for computing the motion

parameters, the motion tranformations of objects A and B were detected (see the results in

table 5.1). In the second cycle, two windows were located around areas in the mask array

A with relatively dense dusters of 0eatries (figure 4), but only the window around object

. .... . .. ..
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C gave a positive result -the motion transformation of object C. In the final cycle no

appropriate windows were found in the array A (figure 5).

Corresponding results from experiment 2 are also shown in figure 4 and figure 5. The

computed transformations are shown in table 5.2.

I rotation I expansion I vertical I horizontal I
I (radians) I I translation I translation I
I I I (pixels) I (pixels) I

I object A I I I I I
I actual 1 0.025 1 0. 1 0. 1 0. 1
I computed 1 0.0234 1 0. 1 0. 1 0. 1

Iobject B I I I I I
I actual 1 0. 1 0.1 1 -1.5 1 0. 1
Icomputed 1 0. 1 0.09375 1 -12 1 0. 1

I object C I II
I actual 1 -0.1 1 0. 1 0. I 22 1
I computed 1 -0.09375 1 0. 1 -02 1 2.1 1

Ilobject D II I
I actual 1 0.12 1 -0.1 1 0. 1 0. 1
I computed I 0.M12 -0.0937 1 -02 1 0. 1

Iobject E I I I II
I actual 1 0. 1 0.22 1 -1.1 1 0.7 1
1computed 1 0. 1 0.0625 ()1 -1.05 1 0.6 1

table 52 - second experiment

(The large error indicated in this entry is due to the smailsuze ofobject E(radius 8
pixels) which reduces the possible resolution in the measurements of rotation and expansion.
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6. Conclusions and Extendors

This work demonstrates an efficient and robust algorithm, based on the Hough

technique, for recovering motion parameters in scenes containing several independently

moving objects. An hierarchical approach, combined with a windowing scheme, is

implemented in order to deal with objects of different size. The storage space and

computation time can be limited, while still computing the motion parameters very

accurately and distinguishing between real objects and noise effects.

We hope to extend this work for sequences of images and for recovering the 3-D

motion parameters of rigid objects. However, the latter task is much more difficult than

recovering 2-D motion parameters. In the 2-D case each vector contributes two constraints

(equations 2.4 and 2.5) whereas in the 3-D case, assuming that depth information is

unknown, each vector contributes only one constraint. Therefore, the signal to noise ratio

in the parameter space (section 32) is much lower. In addition, we expect to have

problems of ambiguity in the interpretation of noisy displacement fields, where a group of

motion transformations can be equally consistent with the data. In such cases a

probabilistic approach might be more suitable. We also plan to implement less restricted

methods for computing a displacement field or other equivalent information, to use the

motion information for object-surround separation, and to test the method in real scenes.
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